Innovations in High Pressure Liquid Injection Technique for Gas Chromatography

Richard Tymko, Transcendent Enterprises, Edmonton, Alberta, Canada
Ronda Gras and Jim Luong, Dow Chemical Canada Inc
Analytical Sciences, Separations Technology
Outline

- Requirements of sample introduction systems
- Liquid sample systems
- Pressurized Liquid Injection System (PLIS)
- Performance and applications
- Conclusions
- Future plans
- Acknowledgements
Requirements of sample introduction system

- The sample introduction process should not depend upon column operating temperature.

- Thermal degradation, adsorption, rearrangements or other solute reactions should be negligible.

- The sample system should not affect column efficiency - input band critical.
Liquid Sample Introduction Systems

- Introduction of semi-volatile liquid in GC via ALS
- Introduction of volatile liquid in GC via valve or vapourizer
 - Rotary valve (Valco Vici, Rheodyne)
 - Diaphragm valve (Valco)
 - Slider valve (ABB, Applied automation)
 - Piston valve (M.A.T)
Limitations of Sample introduction for volatile liquid

The main challenges:
- Dissimilar boiling point solutes (high boiling point compounds in low boiling point matrices)
 - Examples:
 - Diesel in ethane
 - Pole oil in ethylene
 - TBC in butadiene
 - DEHA in butadiene
 - Alcohols in hydrocarbons feedstreams
 - Fractionation (vapourizer, rotary, diaphragm, slider valves)
- Speed of injection too slow for fast gas chromatography
Stem valve concept

- Merits in injection technique
 - M.A.T
 - Siemens
 - Most recently, PLIS (transcendent)
PLIS Design Criteria & Key Features

- Fast injection speed
- High pressure of up to 1200 psig
- No fractionation
- Sample size from nL to 2 uL
- Heatable of up to 300 C (radiant with V1.0)
- Low dead volume
- Low maintenance and user-friendly
Pressurized Liquid Injection System (PLIS)

Courtesy of Transcendent Enterprises Inc.
PLIS in Pieces
PLIS on Agilent HP-6890 GC
A Look At Interface
PLIS on 6890 GC
PLIS / Vacuum GC/DR - SCD Technology
Elimination of pressure vaporizer
Temperature Profile of Injector vs. Vaporizing chamber (°C) - Unheated version

Temperature Profile of Injector vs. Cone (°C)

Set Temperature (°C)

Actual Temperature (°C)

- Injector Temperature (°C)
- Cone Base Temperature (°C)
Selected Chromatographic Applications
A chromatogram of Alberta Natural Gas
GC/FID - Al₂O₃/KCl technology
Repeatability – Natural Gas GC/FID

PLIS Quantitative Repeatability of Natural Gas Injections
Retention Time (min)

Injection Number

Retention Time (min)

Ethane
Propane
i-Butane

Rel. Prec. (95%) = 1.2%
Rel. Prec. (95%) = 0.8%
Rel. Prec. (95%) = 0.7%
A chromatogram of nC10 to nC24 in Hexane

GC/FID - 30 metre, 0.25 mm id, 1 micron CP-Sil 5 CB-MS
A chromatogram of Diesel in Hexane
GC/FID - 30 metre, 0.25 mm id, 1 micron CP-Sil 5 CB-MS
A chromatogram of Sulfurs in Ethane hydrogen sulfide and carbonyl sulfide
PLIS / VGC/DR-SCD
30 meter, 0.32 mm, 5 micron CP-Sil 5 CB-MS
A chromatogram of Sulfurs in Butane

Methyl and ethyl mercaptan – PLIS/VGC/DR/SCD

30 meter, 0.32 mm, 5 micron CP-Sil 5 CB-MS

C4-P403 PLIS/GC/DR-SCD 1:5
Volatile Oxygenated Compounds
MeOH, AA, EO, and EtOH GC/FID,
50 meter, 0.32 mm id, 5 micron CP-Sil 5
Hydrocarbons and Oxygenates
10 metre, 0.53 mm id, Lowox Column Technology

1. nC14
2. Methanol
3. Acetone
4. nC15
5. Ethanol
6. nC16
7. Propanol
8. Iso-butanol
9. Butanol
Stack Injection Technique
100°C-1 min-50°C/min-260°C 5 psig
Lowox Column Technology

1. Methanol
2. Ethanol
3. Propanol
PLIS / GC / FID
Lowox Column Technology – Alcohols in Hydrocarbons
Reproducibility of Retention Time (min) and Area Counts
Impurities in Ethylene Oxide

1. Cyclopropane
2. Acetaldehyde
3. Vinyl chloride
4. Ethylene Oxide
Key Learning's

- PLIS offers key advantages:
 - Small and compact (10 x 3 x 4 cm)
 - Capability to direct couple valve to injector reducing void volume, cold spots, active sites
 - Minimize fractionation of sample
 - Simplicity - ease of maintenance
Key Learning's

- Unlike a rotary valve, speed of injection is not critical in delivering good chromatography.
- Reduction of void volume between valve and injector port - critical
 - Reduction of liner volume
 - Reduction of volume of vapourizing chamber
 - Volume of vapourization chamber determined to be 360 μL
- Helium actuation not necessary and has no impact on overall chromatography obtained.
Limitations

- Unheated version not suitable for high boiling polar compounds
- No long term performance data on seal(s)
MEG, DEG, and TEG
GC/FID - 30 metre, 0.25 mm id, 1 micron CP-Sil 5 CB-MS

![Graph showing FID B (CALD0085.D) with pA on the y-axis and minutes on the x-axis. Peaks are visible at different time points.]
Future Research

- Study effect of fractionation
- Void volume reduction
- Surface deactivation
- Applications development
- Resistively heated version
Acknowledgements

- Dow Chemical Separations Leadership Team
- Professor Dr. Karel Cramers, TU/e
- Rony Van Meulebroeck, Dow Terneuzen
- Curt Stout, Stout Engineering
- Stephen Jefferies, Gambit Products